A NEW METHOD FOR THE DEPROTECTION AND REDUCTION OF DITHIOACETALS

Yoshihiro Shigemasa,^{*} Minoru Ogawa, Hitoshi Sashiwa, and Hiroyuki Saimoto Department of Industrial Chemistry, Faculty of Engineering, Tottori University, Tottori 680, Japan

Reductive desulfurization of aromatic ketone dithioacetals 1 was achieved by the reaction of 1 with a mild reagent, P_2I_4 , in dichloromethane. On the other hand, treatment of 1 with P_2I_4 in acetic anhydride or chloroform selectively gave deprotected ketones.

Dithioacetals have been not only useful as a protecting group but also important as a synthon of carbonyl compounds. Remarkable efficiency in P_2I_4 mediated cleavage of phenolic acetals¹ prompted us to apply the method to transformation of dithioacetals. We report herein that treatment of dithiolanes having aromatic substituents 1 with P_2I_4 selectively gave benzophenone type 2 or diphenylmethane type products 3 under the mild conditions. The reaction of 1a (R = R' = Ph) with P_2I_4 in Ac₂O, CHCl₃, and CCl₄ respectively gave benzophenone (2a) in 43 - 80% yields (Table 1). In contrast, diphenylmethane (3a) was obtained by the same reaction carried out in CH_2Cl_2 .²

A typical procedure is as follows. 2,2-Diphenyl-1,3-dithiolane (1a) (73 mg, 0.30 mmol) was allowed to react with P_2I_4 (172 mg, 0.30 mmol) in Ac₂O (4 ml) at room temperature for 7 h under a nitrogen atmosphere. After removal of Ac₂O under the reduced pressure, ether and a sat. aqueous solution of NaHSO₃ were added. The ether extracts were concentrated and purified by preparative TLC to give **2a** (80% yield).

$$\begin{array}{c} 0 \\ R-C-R' \end{array} \xrightarrow{P_2I_4} \\ Ac_20 \\ R-C-R' \end{array} \xrightarrow{P_2I_4} \\ CH_2Cl_2 \\ CH_2Cl_2 \\ 3 \end{array}$$

Table 1.	Reaction	of	2,2-Diphenyl-1,3-dithiolane w	ith	$P_{2I_{A}}^{a}$	
----------	----------	----	-------------------------------	-----	------------------	--

				L T		
Solvent	Time	Yield	2a: 3a	Recovery of la %		
	h	%				
Ac ₂ 0	7	80	100: 0	0		
CHCI3	24	62	100: 0	10		
CC14	30	43	100: 0	19		
Benzene	23	89	57:43	2		
Cyclohexane	30	45	27:73	27		
CH ₂ C1 ₂	20	80	27:73	0		

a) Dithiolane $la/P_2I_4 = 1/1$ (mol/mol), rt.

	2 4							
Dithiolane		1	Solvent	Additive	Time	Yield	2:3	
R	R '		50170110	Add to the	h	%	2.5	
Ph	Ph	1a	CH ₂ Cl ₂	D20	6	93	9:91	
4-Me0-C ₆ H ₅	Ρh	1b	Ac ₂ 0	-	7	72	100: O	
			CH2C12	-	20	74	23:77	
			CH2C12	H20	6	93	10:90	
4-Me-C ₆ H ₅	Ρh	1 c	Ac ₂ 0	-	7	88	100: 0	
			CH2C12	-	27	73	32:68	
			CH ₂ C1 ₂	H20	8	86	6:94	
4-C1-C6H5	Ρh	1d	Ac ₂ 0	_	7	68	100: 0	
-			CH2C12	-	20	81	33:67	
			CH2C12	H20	8	90	11:89	
4-Me0-C ₆ H ₅	n-C ₄ Hg	1e	Ac20	-	9	53	100: O	
			CH2Cl2	-	45	21b)	100: 0	

Table 2. Reaction of Dithiolanes with $P_2I_A^{a}$

a) Dithiolanes $1/P_2I_4 = 1/1$ (mol/mol); additive, 1 mol eq.; rt.

b) Recovery of 1e: 50%.

As shown in Table 2, dithiolanes with two aromatic substituents were transformed into 2 and 3 in good yields, while the less reactive dithiolane 1e having an aliphatic substituent gave only 2e in low yields.

Although the reason for the different solvent effect between Ac_2O and CH_2Cl_2 is still unclear, it is interesting that treatment of 1a with P_2I_4 in CD_2Cl_2 followed by workup with D_2O failed to give deuterated diphenylmethane. On the other hand, reduction of 1a with P_2I_4 in CH_2CI_2 in the presence of D_2O (1 mol eq.) gave **3a** (85% yield; deuterium content 73%). The results suggest the presence of a trace amount of the proton source such as water in CH_2Cl_2 .³ Furthermore, there was an effect of H_2O addition on the reduction reaction. Selectivity and yields of ${f 3}$ in the presence of H_2O (1 mol eq.) were much higher than those in the absence of H_2O_*

In order to apply this method to the transformation of oxathiolane, 2,2diphenyl-1,3-oxathiolane (4) was stirred with P_2I_4 in Ac₂O at room temperature for 10 h to give **2a** (76% yield), however, treatment of **4** with P_2I_4 in CH_2CI_2 gave a complex mixture. Further application of this method is in progress.

References and Notes

1. H. Saimoto, Y. Kusano, and T. Hiyama, Tetrahedron Lett., 27, 1607 (1986).

2. Solvents were dried by the reported methods: D. D. Perrin, W. L. F.

- Armarego, and D. R. Perrin, "Purification of Laboratory Chemicals," 2nd ed, Pergamon Press, Oxford (1980).
- 3. The origins of protons in the P_2I_4 reduction of thioketones was attributed to a trace of water, see: H. Suzuki, H. Tani, and S. Takeuchi, Bull. Chem. Soc. Jpn., 58, 2421 (1985). See also, H. Suzuki, H. Tani, H. Kubota, N. Sato, J. Tsuji, and A. Osuka, Chem. Lett., 1983, 247.

(Received in Japan 13 December 1988)